
newstest 2019 SIAM NEWS • 1

By Carsten Burstedde

Many proven principles from tradition-
al systems programming remain cur-

rent and valuable in the development of sci-
entific software. Three long-time favorites
are (1) Do one thing and do it well, (2) Keep
it simple, stupid!, and arguably (3) Use the
source, Luke. In this article, I will review
how these principles apply to the develop-
ment of the p4est software library for
adaptive mesh refinement (AMR). p4est
adapts and partitions meshes in parallel
and is used as a mesh provider for various
scientific applications, as well as for gen-
eral numerical mathematics libraries such
as deal.II and PETSc.

Forest-of-linear-octrees AMR
In 2007, during my time as a postdoc-

toral researcher at the University of Texas
at Austin’s Center for Computational
Geosciences and Optimization, we realized
that AMR is necessary for global mantle con-
vection simulations due to the vast discrep-
ancy of geological scales. We had learned
a lot from Tiankai Tu—author of the octor
code that implemented a pointer-based, dis-
tributed Cartesian octree and scaled well to
several thousand Message Passing Interface
(MPI) processes—yet had no solution for
spherical domains. We did consider several
options, including fictitious or embedded
domains and the use of multiple octrees.

One day, I approached my fellow postdoc
Lucas Wilcox (now at Naval Postgraduate
School) with a proposal to reimplement
octor and really understand its method of
operation. Lucas immediately suggested
extending the new code to a forest of octrees
and building it along the algorithmic con-
cepts of Hari Sundar and Rahul Sampath,
who were working with George Biros at
the University of Pennsylvania at the time,
using flat arrays rather than pointers and
storing only the leaves of the octree. After
about a month of pair-programming, we
were able to refine a two-dimensional forest
manifold and write VTK files. Spring and
summer resulted in 2:1 balance capabilities,
a ghost layer algorithm, three-dimensional
support, and node numbering for piecewise
d-linear finite elements — scaling to 62e3
cores of the Texas Advanced Computing
Center’s Ranger supercomputer.

Simplicity, Correctness,
and Performance

It was clear to us that we wanted a library
that “just” does the meshing. For the forest,
the first requirement was an encoding of
the connectivity of tree roots, which them-
selves constitute a conforming hexahedral
mesh. In two dimensions and for each tree

p4est: A Parallel Software Toolbox for
Efficient Mesh Refinement and Partitioning

We benefit from the use of linear arrays
of leaves that are directly suitable as send-
and receive-buffers with regard to MPI.
Since we continue the space-filling curve
through all trees in order, using MPI to

replicate the lower left cor-
ner and tree number of the
first quadrant on each rank,
the Allgather routine
can sufficiently encode the
entire partition’s shape. One
can use top-down travers-

als to search for arbitrary sets of local and
remote points or geometric objects [2].
p4est algorithms determine message pairs
and sizes ahead of time, allowing us to post
asynchronous point-to-point messages with
known envelopes and buffer allocations.
Repartitioning the mesh works in this man-
ner, and the algorithm
executes consistently
in under one second
(see Figure 3).

Application
Interfacing

The boundary
between an appli-
cation and p4est
is fairly sharp; the
application indicates
where to refine and
when to repartition,
and p4est builds
the updated mesh in
parallel — with the
communication out of
sight on the inside.

The application may query the mesh on
several levels, trading off generality and
ease of interfacing. The p4est ghost layer
algorithm, which collects the set of all remote
leaves adjacent to any local leaf, permits an
application to define any type of discretiza-
tion; we used this approach to create the
p4est mesh backend for the finite element
library deal.II [1].

For some common cases, we added the
globally-consistent numbering of degrees
of freedom as interface functions and inter-
nally queried the ghost layer. For example,
the original mantle convection project calls
the piecewise linear variant (see Figure 4).

To reduce the impact of log (/)N P
time searches, Tobin Isaac (now at Georgia
Institute of Technology) implemented an
amortized top-down iteration that informs an
application about every quadrant interface
across faces, edges, and corners [5]. This
approach supports all types of element-local
discretizations and became the basis for inte-
grating p4est with the PETSc software.

Considerations for Adopters
Given that p4est offers flexibility and

scalability, in what must a user invest? The
primary answer is that p4est works with
non-conforming, hanging-node meshes.
Many discretizations can accommodate this
with the addition of element-local interpo-
lation and projection operators. Users can
decide whether these additions compromise
accuracy and stability.

The second attribute is p4est’s take-
over of element ordering, which determines
the partition’s geometric shape. The third
solution points to our encoding scheme of
neighbor trees and elements, into which
the application must adopt or translate. The
associated authoritative documentation is
still a big comment block in the p4est
connectivity header file.

Our collection of examples in the source
tree is now quite broad. In practise, users

might study them and devise a thin wrapping
layer around p4est based on their preferred
conventions (a C++ interface templated on
the space dimension is one such example).

Acknowledgments: I would first like
to acknowledge Lucas Wilcox without
whom p4est would not be what it is.
Secondly, I wish to thank Tobin Isaac for
his smart and deep contributions. I am grate-
ful to Wolfgang Bangerth (Colorado State
University) and Matt Knepley (University at
Buffalo) for their support. Last but not least,
I owe huge thanks to Omar Ghattas (UT
Austin) for allowing us the freedom to work
on p4est and release it as free software.

Finally, I would like to thank all current
and future contributors and users and invite
them to the p4est Hausdorff School,1
which will provide ample opportunity for
technical discussion and hands-on experi-
ence. The school will be held July 20-24,
2020 in Bonn, Germany.

References
[1] Bangerth, W., Burstedde, C., Heister,

T., & Kronbichler, M. (2011). Algorithms
and data structures for massively parallel
generic adaptive finite element codes. ACM
Trans. Math. Soft., 38, 14:1-14:28.

1 http://www.hcm.uni-bonn.de/events/
eventpages/hausdorff-school/hausdoff-
school-2020/p4est2020/

face, we record which neighboring tree
connects at which face and whether the
connection is flipped. For each tree corner,
we separately record which other trees and
respective corners connect — there can
be any number of these. In
three dimensions, we have
four possible rotations at a
face and an arbitrary number
of tree neighbors across any
edge, possibly flipped [4].
This concept allows for near
arbitrary domain topologies, including peri-
odicity (see Figure 1).

The quadrant object encodes any two- or
three-dimensional tree node. Its length is

a (negative) power of two in
relation to the root, and the coor-
dinates of its lower left corner
are integers aligned at multiples
of its length. Obtaining a par-
ent quadrant; a given child; a
sibling; or a face, edge, or cor-
ner neighbor amounts to bitwise
operations on this coordinate
tuple (see Figure 2). Because
each tuple has an equivalent
interpretation as an index in a
space-filling curve, an array of
quadrants is sortable and search-
able by the C library functions
qsort and bsearch.

Figure 2 documents several
time-tested p4est features,
such as dimension-indepen-
dence. We compile both two-
and three-dimensional code
from the same source based on a
preprocessor definition. Another
feature is favoring clarity over
optimization. A third and most

underrated attribute is assertion; many func-
tions have about as many assertions as
lines of actual code, which reliably catches
mistakes during development and certainly
helps keep the number of bugs we find to
below one per year on average.

Figure 1. An adaptive mesh for the two-dimensional
Moebius strip embedded in three-dimensional space. We
have executed the 2 1: balance algorithm, which limits
the size difference between neighbor leaf quadrants. The
color encodes a ±1 leaf partition on three MPI ranks.
Figure courtesy of [4].

Figure 4. A p4est mesh for Earth’s mantle. Adaptivity is crucial to
resolve tectonic plate boundaries at one-kilometer resolution; this
keeps the elements coarser elsewhere for a total leaf count of only a
few 100 million. Figure courtesy of [6].

Figure 2. p4est quadrant child computes the i-th child of a quadrant.

Figure 3. Scalability of mesh repartitioning on “Juqueen.” Its wall-clock time is between one
second and one millisecond, revealing two regimes: one is linear in the number of local leaf
quadrants N P/ , and the other depends on total process count P through partition encoding.
The maximum number of leaves is over .5e12. Figure courtesy of [3].

SOFTWARE AND
PROGRAMMING

2 • newstest 2019 SIAM NEWS

[2] Burstedde, C. (2018). Parallel tree
algorithms for AMR and non-standard data
access. Preprint, arXiv:1803.08432.

[3] Burstedde, C., & Holke, J. (2016).
p4est: Scalable algorithms for parallel
adaptive mesh refinement. In D. Brömmel,
W. Frings, & B.J.N. Wylie (Eds.),
JUQUEEN Extreme Scaling Workshop
(pp. 49-54). Jülich, Germany: Jülich
Supercomputing Centre.

[4] Burstedde, C., Wilcox, L.C., &
Ghattas, O. (2011). p4est: Scalable algo-
rithms for parallel adaptive mesh refine-
ment on forests of octrees. SIAM J. Sci.
Comp., 33, 1103-1133.

[5] Isaac, T., Burstedde, C., Wilcox, L.C.,
& Ghattas, O. (2015). Recursive algorithms
for distributed forests of octrees. SIAM J.
Sci. Comp., 37, C497-C531.

[6] Stadler, G., Gurnis, M., Burstedde,
C., Wilcox, L.C., Alisic, L., & Ghattas, O.
(2010). The dynamics of plate tectonics and
mantle flow: From local to global scales.
Science, 329, 1033-1038.

Carsten Burstedde is a professor of
scientific computing at the Institute for
Numerical Simulation at the University of
Bonn, Germany.

