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Abstract

We introduce the p4est software library for parallel adaptive mesh refinement (AMR). It rep-
resents the mesh as one or more conforming hexahedra that can be individually refined as adaptive
octrees, yielding a distributed non-conforming mesh. Both 2D and 3D are supported. p4est is
intended to be compiled and linked against by numerical simulation codes that require efficient
in-core, static or dynamic load balancing and (re-)adaptation of the computational mesh. This
document presents a detailed description of the main interface and its basic usage and walks the
reader through several example programs, demonstrating the design and usage of the algorithms.
The source code and all related documents are available on the web page www.p4est.org.
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1 Introduction

Many applications in applied mathematics and numerical simulation use a mesh of computational cells
that covers the domain of interest. The numerical solution is then approximated by functions, each of
which is associated with a small set of cells (or even one). Dynamic adaptive methods change the mesh
during the simulation by local refinement or coarsening, and parallel methods distribute (partition)
the mesh between multiple processors, where each processor ideally receives an equal share of the
computational load. pdest isolates the task of parallel dynamic adaptive mesh refinement (AMR),
coarsening, and load balancing by encapsulating algorithms that scale well to large numbers (> 10°)
of processors.

The pdest algorithms are predominantly used for the numerical solution of partial differential
equations, but also support various other tasks where fast hierarchical space subdivision is required,
for example to locate particles in space or to organize, sort, and search in large data sets. This is
possible since pdest separates the AMR topology from any numerical information: The former is
stored and modified internal to the pdest software library, while an application is free to define the
way it uses this information and arranges numerical and other data.

A general AMR simulation pipeline is described in [7], which is not specific to p4est but can in
principle be implemented using any AMR library. The pdest algorithms and main interface routines
are defined in [9] and [12], which are also the suggested citations for users of the software. An example
usage of pdest as scalable mesh backend for the general-purpose finite element software deal.IT is
described in [3]. A reference implementation of pdest in C can be freely downloaded [5] and used
and extended under the GNU General Public License. The code contains commented header files and
simple example programs, several of which are documented in Section 4 below.

2 Interface schematics

The basic structure used in pdest is a connectivity of quadtrees (2D) or octrees (3D) which covers
the domain of interest in a conforming macro-mesh. This includes the case of using exactly one tree
for representing the hypercube. These trees can then be arbitrarily refined and coarsened, where the
storage of quadrants/octants is distributed in parallel. Thus, the mesh primitives used in p4est are
quadrilaterals in 2D and hexahedra in 3D. The adaptive structure allows for quadrants/octants of
different sizes to neighbor each other, which is commonly called non-conforming. This concept leads
to hanging faces and edges.
In this document, we cover the three distinct tasks to

A create a coarse mesh (Figure 1),
B modify the refinement and partition structure internal to p4est (Figure 2),
C and to relate the mesh information to an application (Figure 3).

Unless indicated otherwise, all operations described in these figures are understood as MPI collectives,
that is, they are called on all processors simultaneously. Currently, part A needs to be performed
redundantly on all processors, which is acceptable for up to 10°~10° coarse cells (octree roots). Parts
B and C strictly implement distributed parallelism, where runtime and per-processor memory are
roughly proportional to the number of local elements (octree leaves) on a given processor, independent
of the number of octrees, the total number of elements, or the refinement depth. Partitioning the
forest into equal numbers of elements per processor is a core p4est operation and usually negligible
in terms of execution time, so we suggest to call it whenever load balance is desirable for subsequent
operations.

The definition and organisation of numerical data is entirely left up to the application. The appli-
cation calls modification operations for the forest (part B), guided by the numerical state related to
the local leaves. A numerical application will require its own numbering scheme for degrees of freedom,
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Figure 1: Part A, creating the coarse mesh connectivity. The p4est_connectivity c is a C struct
that contains numbers and orientations of neighboring coarse cells (i.e., the octree roots). It can be
created by translating CAD or mesh data file formats or by using one of several predefined pdest
functions (for example to select the unit cube). Once created, it is generally not changed anymore.
The data format is documented in the extensive comment blocks in pdest_connectivity.h (2D) and
p8est_connectivity.h (3D); the encoding is also defined in [9]. In the following, pdest always refers
to both 2D and 3D.
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Figure 2: Part B, changing the refinement structure and partition. With the connectivity c cre-
ated in part A, we can build the distributed p4est structure and modify it in place. Refinement and
coarsening are controlled by callback functions that usually query flags determined by the application.
p4est_balance ensures 2:1 size balance between neighbors and is optional, depending on the applica-
tion’s requirements. pdest_partition redistributes the cells (octants) in parallel and can optionally
take a per-octant weighting callback. The C struct p must only be changed by these API calls and is
understood as read-only otherwise. It can be inspected directly by an application, for example to loop
through data associated with local leaves.
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Figure 3: Part C, creating an application-specific numbering of degrees of freedom. For a given pdest
snapshot, we first create a ghost layer g of off-processor leaves, which will be outdated and should be
destroyed once p is changed again in part B. The p4est_nodes and p4est_lnodes constructors create
a processor-local view of globally unique node numbers and the dependency lists for hanging nodes for
continuous tensor-product piecewise linear and piecewise polynomial finite elements, respectively. The
iterator provides a generic way to traverse the refinement structure and to have callbacks executed
for every face, edge, and corner neighborhood, which can be used to identify node locations and their
hanging status for any custom element type. pdest_iterate can also be used for applications that have
no concept of nodes at all and just need to query the local mesh neighborhood.
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Figure 4: Separation between pdest on one hand and application-specific mesh and numerical in-
formation on the other. The dark blue nodes in the picture correspond to in-place operations on the
forest p that fall under part B (Figure 2). The dark green node labeled ExtractMesh refers to cre-
ating a node numbering structure n (part C; see Figure 3) and the allocation of numerical space in
application memory guided by n. The bright green fields in the bottom-most row refer to moving the
application-specific numerical information from the old mesh to the new one. We suggest doing this
i two steps: Interpolation works processor-local since the partition has not been changed at this point.
Then, after partitioning, transfer moves data to the new owner processors of the respective degrees of
freedom without changing the refinement pattern any further. Both operations require the existence of
both the old and new n structures, and allow for freeing the older one afterwards. (Plots originally
published in [7].)



which is most of the time defined via node locations on a reference element and dependencies between
hanging nodes and the independent nodes they are interpolated from. p4est provides several paths
for aiding the application in defining their data layout, henceforth called the mesh (part C), and not
to be confused with the coarse octree mesh (part A). Figure 4 contains illustrations on the sequence
of operations that are proposed to create a new refinement pattern from scratch or by modifying an
existing one, and to move the application-specific numerical data from an old to a new mesh.

3 Building and installing p4est

The p4est software is organized as a library and comes with several example programs and tests that
link to the library. The software is preferably installed standalone into a dedicated directory, where
an application developer can then find the header and library files to compile and link against.

pdest does not have any library dependencies except for a recent zlib version [10]. p4est uses the
adler32_combine function for a parallel checksum and relies on zlib compression in the VTK output
routines. If configure does not detect this function, it will print a message saying that these features
will not work. The user can fix this for example by installing zlib’s development binary package, or by
compiling a current zlib source and pointing the LIBS and CFLAGS environment variables to it. The
submodule sc also checks for a development version of the Lua library. Lua is not used in p4est; the
message can be ignored or fixed in the same way.

3.1 Installation from a downloaded .tar.gz file

pdest uses the GNU autoconf/automake/libtool build system. The INSTALL contains generic in-
structions that apply to p4est as well. The pdest tar archive posted on the web page contains the
configure script and all required auxiliary files. As detailed in the INSTALL document, it honors certain
environment variables and command line options. The following options to configure are often used.

—-—enable-mpi is necessary for parallel functionality. Without this option, p4est does not require MPI
and replaces the calls to it by a dummy implementation that always assumes an MPI_Comm_size
of 1 and an MPI_Comm_rank of 0. With this option, it uses the original MPI calls.

--enable-debug enables assertions and additional code for verification. This is generally helpful for
development, even if it is somewhat slower and produces a lot of diagnostic log messages.

CFLAGS="-Wall -g -00" is an example of setting flags for a development build compiled with the
GNU compilers. pdest is written in plain C and does not require FFLAGS or CXXFLAGS.

Both in-source and out-of-source builds are supported. For a one-time installation, ./configure
can be called in the root directory of the unpacked tree. For development or for testing multiple
configure options, it is advised to create an empty directory for each configuration and invoke configure
from there with a relative path.

The subpackage sc is contained in the tarball and used by default. It is possible to use a version
of sc that has been make install’d independently (usually not worth the effort for one-time builds):

1. Change into a new empty directory and call sc/configure with its relative path. Use —-prefix=
path-to-install-sc to specify the destination for the compiled files. Then call make install.

2. Create another empty directory and call the pdest configure with its relative path and the
options —-prefix=path-to-install-p4est and —-with-sc=path-to-install-sc. Make sure to use the
same compiler flags and configure options as in the previous step. Finally, make install.

The above is the recommended procedure to split the p4est installation into two packages, say for a
linux binary distribution. The benefit is that other packages that might require sc do not force pdest
to get installed. The administrator may or may not choose to put the header and library files for the
two packages into different directories.



3.2 Installation from source

When installing from source, GNU autotools must be invoked to generate the necessary configuration
files and the configure script. A bootstrap script is provided for this purpose: give the shell command
./bootstrap before following the instructions in the INSTALL file. Then proceed as in Section 3.1.

3.3 Installation from a git repository

If you have obtained p4est from a git repository, the sc submodule must be cloned before installation.
This can be accomplished with the shell command git submodule init && git submodule update.
After the submodule has been obtained, you can install from source as described above in Section 3.2.

3.4 Using p4est through the deal.Il interface

The generic adaptive finite element software library deal.IT interfaces to p4est since version 7.0 to
parallelize its mesh handling. We have added the script doc/p4est-setup.sh to compile and install
p4est with predefined options; this creates both a debug and production version with minimal logging.
To know what is going on within p4est at run time, the log level needs to be relaxed in the script.

4 Example programs

This section presents several instructive example programs that work with pdest. They are part of the
source code under the example/steps/ directory. The examples compile and run and are commented
and understandable by itself. In this document we comment on (slightly modified) excerpts and provide
additional background information about the logical structure of pdest. The examples are optimized
for clarity, not for speed—please adapt as needed.

4.1 Hello world

The program example/step/p4est_stepl creates a refinement pattern from image data and writes
an output file in VTK format. It comes in two variants for 2D and 3D (both compiled from the same
source file to prevent redundancy). The image has dimensions 32x32, which we state as follows:

#define P4EST_STEP1_PATTERN_LEVEL 5

#define P4EST_STEP1_PATTERN_LENGTH (1 << P4EST_STEP1_PATTERN_LEVEL)
static const int plv = P4EST_STEP1_PATTERN_LEVEL;

static const int ple = P4EST_STEP1_PATTERN_LENGTH;

We will have to scale this information to match the unit cube domain that we choose for our mesh
connectivity (cf. the interface schematics in Section 2). The code below is from them main function.

mpicomm = sc_MPI_COMM_WORLD; /* #define’d depending on --enable-mpi. */
#ifndef P4_TO_P8

conn = p4est_connectivity_new_unitsquare ();
#else

conn = p8est_connectivity_new_unitcube ();
#endif

p4est = pdest_new (mpicomm, conn, O, NULL, NULL);

At this point in the main program we have a parallel mesh structure that is initially unrefined, that
is, the whole domain consists of one root octant. To refine the mesh we call

recursive = 1;
p4est_refine (pdest, recursive, refine_fn, NULL);



which walks through the forest, in this case recursively, and queries the refinement flag via the call-
back function refine_fn. This function receives a pointer to a pdest_quadrant that has coordinate
members x, y (and z in 3D). pdest works in integer coordinates of type pdest_qcoord_t and defines
the length of a tree root as a power of two (this is from p8est.h):

#define PSEST_MAXLEVEL 18
#define PSEST_ROOT_LEN ((p4est_qgcoord_t) 1 << P8EST_MAXLEVEL)

Consequently, a quadrant of refinement level 0 < £ < 5 covers 2°~¢ pixels of the image, which we then
iterate through to react to dark values that we use as refinement indicators.

static int
refine_fn (p4est_t * pdest, pdest_topidx_t which_tree,
pdest_quadrant_t * quadrant)

{
/* omitted: manage 3D extrusion and levels greater than 5 */
tilelen = 1 << (plv - quadrant->level); /* Pixel size of quadrant */
offsi = quadrant->x / P4EST_QUADRANT_LEN (plv); /* Pixel x offset */
offsj = quadrant->y / P4EST_QUADRANT_LEN (plv); /* Pixel y offset */
for (j = 0; j < tilelen; ++j) {
for (i = 0; i < tilelen; ++i) {
p = hw32_header_data[ple * (ple - 1 - (offsj + j)) + (offsi + i)];
if (p < 128) {
return 1;
}
}
}
return O;
}

The refinement pattern is now established, but since all quadrants are children of the original root, they
are on the same processor. (This is a situation that we usually avoid by refining with recursive = 0;
and repartitioning after every refinement/coarsening. See the finite element solver discussed in Sec-
tion 4.4 for the recommended procedure.) To equidistribute the quadrants in parallel, call:

partforcoarsen = 0;
pdest_partition (pdest, partforcoarsen, NULL);

The partition-for-coarsening flag may be set to true to avoid that any family of equal-size quadrant
siblings is split between processors. In this example, we also exercise the 2:1 size balance for demon-
stration purposes; if any neighbors across a face have a size difference bigger than two then the larger
neighbor is refined (recursively if necessary).

balance = 1;

if (balance) {
p4est_balance (p4est, P4EST_CONNECT_FACE, NULL);
p4est_partition (pdest, partforcoarsen, NULL);

}

We may strengthen the balance requirement to PAEST_CONNECT_EDGE or PAEST_CONNECT_CORNER. Now
it remains to write output for visualizing the mesh as displayed in Figure 5.

pdest_vtk_write_file (pdest, NULL, P4EST_STRING "_stepl");

We have opted against reference counting or garbage collection; the user is welcome to implement such
features in their own wrapper code. The destruction of the forest and connectivity is done as follows.



Figure 5: Left: ParaView visualization of the VTK files created by example/steps/pdest_stepl
(2D), color coded by refinement level. Right: results frommpirun -np 5 example/steps/p8est_stepl
(8D). These programs start with a unit square/cube domain and refine it according to a grayscale image
that contains the text “Hello World.” The 3D plot has been created using a background selection of
refinement levels 4—6 (blue) and a foreground selection of octants at level 6, color coded by MPI rank.
Both programs enforce 2:1 size balance across the mesh faces to grade the refinement.

pldest_destroy (pdest);
p4est_connectivity_destroy (conn);

Reading the actual source code, the reader will see the MPI initialization/finalization and additional
macros to check assertions.

4.2 Creating a connectivity from a mesh file

The second example example/step/pdest_step2 reads in a connectivity from a mesh file and then
adapts, balances, and distributes it. We have chosen to implement an ABAQUS .inp file reader
for quadrilateral and hexahedral meshes since both Cubit (https://cubit.sandia.gov/) and Gmsh
(http://geuz.org/gmsh/) can output to this format. The .inp reader can easily be be adapted to
other formats.

To generate a quadrilateral mesh using Gmsh one needs to first download and install it from
http://geuz.org/gmsh/. In addition to the source, on the website there are prebuilt binaries for
Windows, Mac OS X, and Linux. After obtaining Gmsh, the next thing to do is generating a domain
geometry. Here is a example geometry file for a cube with a cylindrical hole.

lc = 1;
rl = 5;
r2 = 3;

Point(1) = {-r1,-r1,-r1,1c};
Point (2) {rl,-r1,-r1,1c};
Point(3) = { r1, r1,-r1,1c};

Point(4) = {-r1, r1,-r1,1c};
Point(5) = { 0, O0,-r1,1lc};
Point(6) = { 0,-r2,-ri,lc};
Point(7) = { 0, r2,-r1,1c};
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Point(8) = { r2, 0,-r1,1lc};

Point(9) = {-r2, 0,-r1,lc};
Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Circle(5) = {8, 5, 7%};
Circle(6) = {7, 5, 9};
Circle(7) = {9, 5, 6};
Circle(8) = {6, 5, 8%};

Line Loop(9) = {1,2,3,4};
Line Loop(10) ;

I
-
o
(e}
~
oo
()

Plane Surface(11) = {9, 10%};
Recombine Surface {11};

Extrude {0,0,2*r1} {
Surface{11}; Layers{2*r1/lc}; Recombine;
}

A 3D mesh file hole. inp can be generated from a geometry file hole.geo with the following command.
gmsh -3 -o hole.inp hole.geo

The mesh reader function in pdest reads a basic ABAQUS file supporting element types with the
prefix C2D4, CPS4, and S4 in 2D and prefix C3D8 in 3D reading them as bilinear quadrilateral and
trilinear hexahedral trees, respectively.

A basic 2D .inp mesh is given as

*Heading
box.inp
*Node

1, -5, -5, 0
2, 5, -5, 0
3, 5, 5,0
4, -5, 5,0
5, 0, -5, 0
6, 5, 0,0
7, 0, 5,0
8, -5, 0,0
9, 1, -1, 0
10, 0, 0, O
11, -2, 1, 0

*Element, type=CPS4, ELSET=Surfacel

i, 1, 10, 11, 8
2, 3, 10, 9, 6
3, 9,10, 1, 5
4, 7, 4,8, 11
5, 11, 10, 3, 7
6, 2, 6,9, b5

11



Figure 6: Left: ParaView visualization of the VTK files created by example/steps/pdest_step2
example/steps/hole_2d_gmsh.inp (2D). This is the octree connectivity that can be adapted
and balanced just like the built-in connectivities. Right:  Results from mpirun -np 7
example/steps/p8est_step2 example/steps/hole_3d_gmsh.inp (3D), color coded by MPI rank.
Note that the paths to the mesh files may differ depending on the installation.

The *Node section contains the vertex number and z, y, and z components for each vertex. The
*Element section gives the element number and the 4 vertices in 2D (8 vertices in 3D) of each element
in counterclockwise order (for 3D the vertices are give in counterclockwise order for the bottom face
followed by the top face).

The setup for this example is the same as for example/step/pédest_stepl with the main differences
being the refinement function and the construction of the connectivity of the forest. For this example we
use a uniform refinement function and call it iteratively, partitioning after each new level of refinement.

The connectivity is created from an . inp mesh file with name filename.inp with the function call

conn = pdest_connectivity_read_inp (filename);

Depending on the mesh generator it may be useful to reorder the connectivity to improve the com-
munication pattern before building the forest. If pdest is configured with METIS (http://www.cs.
umn.edu/~metis) graph partitioner support (using the flag ——with-metis) then we can use it reorder
the connectivity for an optimized partitioning of the forest across processors. (We stress that METIS
is not required in practice; asymptotic scalability is fine either way.) The following call will build the
dual graph based on face connectivity to determine the partition.

#ifdef P4EST_WITH_METIS
p4est_connectivity_reorder (mpicomm, O, conn, P4EST_CONNECT_FACE) ;
#endif /* PAEST_WITH_METIS */

Once the connectivity is read in from the file and possibly reordered it can be used just like the built-in
connectivities. Visualizations of some generated meshes are displayed in Figure 6.

4.3 Iterating through an adaptive mesh: a parallel advection example

The emphasis of the first two examples was creating, adapting, and distributing a forest. The third
example example/step/pdest_step3 uses a simple advection problem (uniform velocity on a periodic
domain) to demonstrate two common tasks for data associated with quadrants/octants: moving data
between neighboring partitions, and comparing data in neighboring cells.

pdest has several options (see Figure 3) for relating mesh information to an application so that it
can manage the data used to represent e.g. the solution of a PDE, but in this example we use p4est’s
internal mechanisms for associating data with a forest and with each individual quadrant.
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A forest has a user_pointer to keep track of the forest’s application context. This can be a pointer
to anything: in this example it is a pointer to a C struct with the problem description.

typedef struct step3_ctx

{
double center [PAEST_DIM]; /**< coordinates of the center of
the initial condition Gaussian
bump */
double bump_width; /**< width of the initial condition
Gaussian bump */
//
}

step3_ctx_t;
To associate data with each quadrant, we define a C struct with the data fields that we want,

typedef struct step3_data

{
double u; /**< the state variable */
double du[P4EST_DIM]; /**< the spatial derivatives */
double dudt; /*%< the time derivative */

}

step3_data_t;
and a routine for initializing data,

static void
step3_init_initial_condition (p4est_t * pdest, pdest_topidx_t which_tree,
p4est_quadrant_t * q)

{
/* the data associated with a forest is accessible by user_pointer */
step3_ctx_t xctx = (step3_ctx_t *) pdest->user_pointer;
/* the data associated with a quadrant is accessible by p.user_data */
step3_data_t xdata = (step3_data_t *) g->p.user_data;
double midpoint [3];

step3_get_midpoint (p4est, which_tree, q, midpoint);
/* initialize the data */
data->u = step3_initial_condition (midpoint, data->du, ctx);

}

which we pass to pdest_new() or p4est_new_ext (), the latter being a version that exposes additional
control parameters.

/* Create a forest that has 16 (274) cells in each direction */
p4est = pdest_new_ext (mpicomm, /* communicator */

conn, /* connectivity */

0, /* minimum quadrants per MPI process */

4, /* minimum level of refinement */

1, /* £i1l uniform */

sizeof (step3_data_t), /* data size */
step3_init_initial_condition, /* initializes data */
(void *) (&ctx)); /* context */

To pass the quadrants’ data to neighboring processes, we use the ghost layer object pdest_ghost_t
(see p4est_ghost.h).

13



pdest_ghost_t *ghost ;

/* create the ghost quadrants */

ghost = pdest_ghost_new (pdest, P4EST_CONNECT_FULL);

/* create space for storing the ghost data */

ghost_data = P4EST_ALLOC (step3_data_t, ghost->ghosts.elem_count);
/* synchronize the ghost data */

p4est_ghost_exchange_data (p4est, ghost, ghost_data);

(Note that if you have quadrant-associated data that is not managed by p4est’s internal mechanism,
you can still exchange ghost layer data with pdest_ghost_exchange custom().) The above ghost
exchange is a synchronization point; it would be easy to extend it to overlap it with other computations.

In this advection example, we use an upwinding flux scheme, which means that we need to compare
the data of neighboring quadrants. There are several cases to consider: a quadrant’s face neighbor
can be bigger, equal or smaller than itself (in this example p4est_balance() is used, so the size ratio
can only be 2:1); the neighbor can be local or a ghost quadrant; the neighbor may be in a different
tree of the forest. The function p4est_iterate() is designed to handle these issues by means of user
supplied callback functions. This is how the fluxes between quadrants are calculated in this example.

p4est_iterate (pdest, /* the forest */
ghost, /* the ghost layer */
(void *) ghost_data, /* the synchronized ghost data */
step3_quad_divergence, /* callback to compute each quad’s
interior contribution to du/dt */
step3_upwind_flux, /* callback to compute each quads’
faces’ contributions to du/dt */
#ifdef P4_TO_P8
NULL, /* there is no callback for the
edges between quadrants */
#endif
NULL) ; /* there is no callback for the
corners between quadrants */

Here are the first few lines of step3_upwind flux (), where the data describing the two sides of a face
are extracted.

static void
step3_upwind_flux (pdest_iter_face_info_t * info, void *user_data)
{

// ... (other declarations)

p4est_iter_face_side_t *side[2];

sc_array_t *sides = &(info->sides);

/* because there are no boundaries, every face has two sides */
P4EST_ASSERT (sides->elem_count == 2);

side[0] = pdest_iter_fside_array_index_int (sides, 0);
side[1] p4est_iter_fside_array_index_int (sides, 1);

//

a look at the definition of p4est_iter_face_side_t in p4est_iterate.h shows all of the context that
is automatically calculated for the user.

typedef struct pdest_iter_face_side

14



pdest_topidx_t treeid; /**< the tree on this side */
int8_t face; /**< which quadrant side the face
touches */
int8_t is_hanging; /**< boolean: one full quad (0) or
two smaller quads (1) */
/* if is_hanging == 0, use is.full to access per-quadrant data;
* if is_hanging == 1, use is.hanging to access per-quadrant data */
union p4est_iter_face_side_data
{
struct
{
int8_t is_ghost; /**< boolean: local (0) or ghost (1) */
pdest_quadrant_t  *quad; /**< the actual quadrant */
pdest_locidx_t quadid; /**< index in tree or ghost array */
X
full;
struct
{
int8_t is_ghost[2]; /**< boolean: local (0) or ghost (1) */
pdest_quadrant_t  *quad[2]; /**< the actual quadrant */
pdest_locidx_t quadid[2];  /**< index in tree or ghost array */
}
hanging;
}
is;

}

The user can thus exchange ghost values in parallel and then call pdest_iterate and compute all
necessary updates for the next time step without further communication.

While this program may appear somewhat daunting at first sight, we like to point out that p4est is
not a solver library and thus does not implement any numerical tasks. This program basically supplies
the numerical part and leverages over 30,000 lines of p4est parallel AMR logic.

4.4 A minimal finite element solver

As a final example we present an adaptive finite element solver for the Poisson equation on the unit
square; see example/steps/pdest_step4. We focus on processing hanging nodes and the parallel
scatter operation in the matrix vector product. We do not implement any preconditioner here, which
would of course be recommended to achieve a mesh-independent iteration count. Given the node
numbering in pdest_lnodes, it is in fact fairly straightforward to interface to a parallel sparse linear
algebra library.

This example is truly minimal and works at the lowest possible level of encoding hanging nodes,
relying on the pdest numbering conventions [9]. Application developers may choose to encapsulate
this logic into their own numbering and access schemes to limit the amount of code that depends on
p4est data structures.—

We begin by refining the mesh non-recursively, which is recommended for good load balance. The
2:1 balance function is called after the loop below.

for (level = startlevel; level < endlevel; ++level) {
p4est_refine (pdest, 0, refine_fn, NULL);
/* Refinement has lead to up to 4x/8x more elements; redistribute them. */
p4est_partition (p4est, O, NULL);
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}

Next we classify the finite element nodes, which lie at the corners of an element for a piecewise bi-
/trilinear discretization. For the unit square or cube, it is easy to determine the domain boundary; for
more complex geometries we would examine the tree connectivity to check whether a tree touches the
domain boundary or another tree.

static int
is_boundary_unitsquare (p4est_t * pdest, pdest_topidx_t tt,
p4est_quadrant_t * node)
{
/* For this simple connectivity it is sufficient to check x, y (and z). */
return (node->x == 0 || node->x == P4EST_ROOT_LEN ||
node->y == 0 || node->y == P4EST_ROOT_LEN ||
#ifdef P4_TO_P8
node->z == 0 || node->z == P4EST_ROOT_LEN | |
#endif
0);
}

For any given element we can access information about the hanging status of its boundary entities;
to this end we use a dedicated decoding function. It reads the face_code, which is available in the
p4est_lnodes structure and consists of one integer per element, where the lowest D = PAEST_DIM bits
hold the child number of the element relative to its parent, the next D bits the status of the potentially
hanging faces, and in 3D another D bits the status of the potentially hanging edges.

/* We need to determine whether any node on this element q is hanging. */
anyhang = lnodes_decode2 (lnodes->face_codel[q], hanging_corner);

The element nodes are enumerated in p4est_lnodes. We do not store any node coordinates and
leave it to the application to compute them when needed. Care must be taken to use the node from
the parent if one element meets a larger neighbor.

for (i = 0; i < PAEST_CHILDREN; ++i) { /* Loop over 2**D corners. */
1ni = lnodes->element_nodes[P4EST_CHILDREN * k + i]; /* Element index k. */
if (bc[lni] < 0) {
if (anyhang && hanging_corner[i] >= 0) {
/* This node is hanging; access the referenced node instead. */
p4est_quadrant_corner_node (parent, i, &node);
}
else {
p4est_quadrant_corner_node (quad, i, &node);

¥

/* Determine boundary status of independent node. */
bc[1ni] = is_boundary_unitsquare (p4est, tt, &node);

/* Transform per-tree reference coordinates into physical space. */
pdest_qcoord_to_vertex (p4est->connectivity, tt,
node.x, node.y, nyz);

/* Use physical space coordinates to evaluate functions */

rhs[1ni] = func_rhs (vxyz);
uexact[lni] = func_uexact (vxyz);
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}
}

The matrix vector product is implemented as a loop over the processor-local elements. If the
element has hanging nodes, we interpolate them from the independent degrees of freedom, multiply
with the element matrix, and then apply the transpose of the interpolation. The interpolation function
exploits the face_code in the same way as 1nodes_decode2 above. We list the version for piecewise
D-linear elements.

const int c = (int) (face_code & ones); /* ones = 2*%*D - 1 x/
int work = (int) (face_code >> P4EST_DIM);

/* Compute face hanging nodes first (this is all there is in 2D). */
for (i = 0; i < PAEST_DIM; ++i) {
if (work & 1) {
ef = pdest_corner_faces[c][i];
sum = O0.;
for (j = 0; j < PAEST_HALF; ++j) {
sum += inplace[pdest_face_corners[ef][j]1];
}
inplace[c ~ ones = (1 << i)] = sum / P4EST_HALF; /* divide by 2x*(D-1) */
}
work >>= 1;

}

#ifdef P4_TO_P8
/* Compute edge hanging nodes afterwards */
for (i = 0; i < P4EST_DIM; ++i) {
if (work & 1) {
ef = p8est_corner_edges[c][i];
inplace[c = (1 << i)] = .5 * (inplace[p8est_edge_corners[ef] [0]] +
inplace[p8est_edge_corners[ef] [1]]);
}
work >>= 1;
}
#endif

Arbitrary-order tensor-product elements are implemented in much the same way; we would use matrices
for polynomial interpolation on both hanging faces and edges. Below is the hanging-node matrix vector
product and transpose interpolation using predefined hanging-node lookup tables.

for (i = 0; i < P4EST_CHILDREN; ++i) { /* Loop over cormers. */
sum = O0.;
for (j = 0; j < PAEST_CHILDREN; ++j) {
sum += (*matrix) [i][j] * inloc[j]l; /* Element matvec. */

¥

if (hanging_corner[i] == -1) {
/* This node is not hanging, there is no need to transform. */
c = 0;

ncontrib = 1;

contrib_corner = &i;

sum *= factor; /* Geometry scaling on the unit cube. */
by
else {
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/* This node is hanging. Use hanging node relations from the
* reference quadrant by transforming corner numbers with ~ c. */
¢ = hanging_corner[i]; /* Child number of quadrant. */
ncontrib = corner_num_hanging[i ~ c];
contrib_corner = corner_to_hanging[i ~ c];
sum *= factor / (double) ncontrib;
}
/* The result is added into the output vector. */
for (j = 0; j < ncontrib; ++j) {
h = contrib_corner[j] ~ c; /* Inverse transform of node number. */
if (!'isboundary[h]) {
out[all_lni[h]] += sum; /* Sum into node vector. */
}
}
}

It remains to scatter and sum the contributions for all processors that share access to a node. To this
end we use the function share_sum, which is short since it leverages the p4est_lnodes_share_all
routine that we have implemented specifically for this purpose. It works for any polynomial order.

5 Further reading

5.1 Technical papers on p4est

This document is linked on the official p4dest web page [5], which also contains links to the source code
and examples, generated documentation, and the detailed technical papers summarized below.

The technical paper [9] describes the logic for connecting neighboring octrees, determining the
coordinate transformations between them, and several high-level algorithms such as p4est_refine,
pdest_coarsen, pdest_balance, pdest_partition, and the original p4est_ghost version. It contains
scalability results on over 220k cores of the Jaguar supercomputer. The technical paper [12] (submit-
ted) contains an updated pdest_ghost version and algorithms for iterating through the mesh topology
and numbering finite element degrees of freedom in parallel. It contains scalability results on over 458k
cores of the JUQUEEN supercomputer. Togother, these two papers constitute the algorithms refer-
ence for p4est. In addition, [11] contains an in-depth discussion and demonstration of our optimized
parallel 2:1 balance algorithm.

5.2 Projects using p4dest

Our initial motivation developing p4est was to enable scalable adaptive simulations for earth’s mantle
convection, specifically in supporting development of the Rhea code [1,2,8,15]. pdest has been a
separate module from the beginning to allow for easy interfacing with other applications. The authors
are using it for simulating e.g. seismic wave propagation [17], ice sheet dynamics [13], atmospheric
flow [6], and to investigate techniques such as parallel geometric/algebraic multigrid [16]. All of these
applications scale to between 103 and 10° CPUs; the biggest mesh we have created so far consists of
roughly 513 x 10 elements (demonstrated on both Jaguar and JUQUEEN).

We have interfaced the deal.II software for generic adaptive finite element simulations to pdest,
thus removing a scalability bottleneck that goes back to the design of deal.II’s original replicated
mesh storage [3,4]. A prominent example of using pdest through deal.II is the mantle convection
code ASPECT [14].

We are contacted on a regular basis by researchers working with p4est. Please email your com-
ments/questions/ideas for contribution to the mailing list pdest@librelist.com.
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